# Electron wave function of hydrogen Calculator

## Calculates the electron wave functions of hydrogen-like atoms.

 The wave function Ψ(r,θ,φ) is the solution to the Schrodinger equation.The angle unit of θ and φ are degrees.
 Atomic number Z H(1) He+(2) Principal quantum number n n=1,2,3,... Angular quantum number l l=0,1,2,..,n-1 Magnetic quantum number m m=-l,l+1,..,l-1,l Electron position r Bohr radius a=1 Zenith angle θ degree Azimuth angle φ degree 6dgt10dgt14dgt18dgt22dgt26dgt30dgt34dgt38dgt42dgt46dgt50dgt Ψ(r,θ,φ) rΨ(r,θ,φ)
 $\normal The\ wave\ function\ \psi(r,\theta,\phi)\\\hspace{100}of\ the\ Hydrogen\ atom\\[10pt](1)\ -{\large\frac{\hbar^2}{\2m}}\nabla^2\psi-{\large\frac{Ze^2}{r}}\psi=E\psi\\\hspace{25}E=-{\large\frac{Z^2me^4}{2n^2\hbar^2}},\qquad Z=\{1:H,\ 2:He^+\}\\\vspace{10}(2)\ \psi_{n,l,m}(r,\theta,\phi)=R_{nl}(r)Y_l^{m}(\theta,\phi)\\\hspace{10}{\large\int_{\small 0}^{\hspace{25}\small{\infty}}\int_{\small 0}^{\hspace{25}\small{\pi}}\int_{\small 0}^{\hspace{25}\small{2\pi}}}\psi_{\small{n,l,m}}\psi_{\small{n',l',m'}}\ r^2sin\theta drd\theta d\phi\\\hspace{80}=\delta_{\small{nn'}}\delta_{\small{ll'}}\delta_{\small{mm'}}\\\vspace{10}(3)\ R_{nl}(r)=-\sqrt{({\large\frac{2Z}{na}})^3{\large\frac{(n-l-1)!}{2n(n+l)!}}}e^{-{\normal\frac{Zr}{na}}} \\\hspace{90}\times\ ({\large\frac{2Zr}{na}})^{l}L_{n-l-1}^{2l+1}({\large\frac{2Zr}{na}})\\[15]\hspace{18}Y_l^m(\theta,\phi)=\sqrt{{\large\frac{2l+1}{4\pi}}{\large\frac{(l-m)!}{(l+m)!}}}P_l^m(cos\theta)e^{im\phi}\\$

Sending completion

To improve this 'Electron wave function of hydrogen Calculator', please fill in questionnaire.
Male or Female ?
Male Female
Age
Under 20 years old 20 years old level 30 years old level
40 years old level 50 years old level 60 years old level or over
Occupation
Elementary school/ Junior high-school student
High-school/ University/ Grad student A homemaker An office worker / A public employee
Self-employed people An engineer A teacher / A researcher
A retired people Others
Useful?
Very Useful A little Not at All
Purpose of use?