# Romberg array Calculator

## Calculates the Romberg array produced by applying Richardson’s extrapolation procedure, which forms the basis of the Romberg Method.

 The final diagonal element so produced is the best estimate of the integral.$I={\large\int_a^{\hspace{25}b}}f(x)dx=R_{\small n}^{\small\ k}+O$$(\frac{b-a}{2^n})^{\small 2k+2}$$\\[10]\hspace{10} R_{\small 0}^{\small\ 0}\\\hspace{10} R_{\small 1}^{\small\ 0}\hspace{30} R_{\small 1}^{\small\ 1}\\[10]\hspace{10} \cdots\hspace{40} \cdots\hspace{30} \ddots \\[10]\hspace{10} R_{\small n-1}^{\small\ 0}\hspace{15} R_{\small n-1}^{\small\ 1}\hspace{15} \cdots \hspace{10} R_{\small n-1}^{\small\ n-1}\\\hspace{10} R_{\small n}^{\small\ 0}\hspace{30} R_{\small n}^{\small\ 1}\hspace{30} \cdots \hspace{10} R_{\small n}^{\small\ n-1}\hspace{20} R_{\small n}^{\small\ n}\\$
 f(x) a , b maximum step n 2 3 4 5 6 7 8 9 10  partitions N=2n rule Trapezoidal Midpoint Non-linear substitution (Midpoint)
 6dgt10dgt14dgt18dgt22dgt26dgt30dgt34dgt38dgt42dgt46dgt50dgt
 The Romberg integration Rnn can be rapidly converged with the increase in n.It is calculated by increasing the number of partitions to double from 2 to N=2n.In the case of non-analytic at endpoints of f(x), you can calculate by Midpoint rule.In the case of a periodic function, you can calculate by Non-linear substitution in x. $\normal Romberg\ integration\\[10](1)\ Trapezoidal\ rule\\\hspace{10} R_{\small 0}^{\small\ 0}= {\large\frac{h_0}{2}}\{f(a)+f(b)\}, \hspace{20}h_0=b-a\\\hspace{8} R_{\small n}^{\small\ 0}= {\large\frac{R_{\small n-1}^{\small\ 0}}{2}}+h_n{\large \sum_{\tiny j=1}^{\small 2^{n-1}}}f(a+(2j-1)h_n)\\\hspace{190}h_n={\large\frac{b-a}{2^n}}\\[10](2)\ Midpoint\ rule\\\hspace{10} R_{\small 0}^{\small\ 0}= h_0f(a+{\large\frac{h_0}{2}}),\hspace{20}h_0=b-a\\\hspace{10} R_{\small n}^{\small\ 0}= h_n{\large \sum_{\tiny j=1}^{\small 2^n}}f(a+(j-\frac{1}{2})h_n), \hspace{15}h_n={\large\frac{b-a}{2^n}}\\(3)\ R_{\small n}^{\small\ k}= {\large\frac{4^{\small k} R_{\small n}^{\small\ k-1}-R_{\small n-1}^{\small\ k-1}}{4^{\small k}-1}}\\[10](4)\ Relative\ Error\hspace{30} \epsilon_{\small n}=\left|\frac{R_{\small n}^{\small\ n}-R_{\small n-1}^{\small\ n-1}}{R_{\small n}^{\small\ n}}\right|\\[30]Non-linear\ substitution\ in\ x\\\hspace{25} I={\large\int_a^{\hspace{25}b}}f(x)dx\ ={\large\int_{\small-1}^{\hspace{25}\small1}}f(x)\ \frac{b-a}{2}\ \frac{3(1-u^2)}{2}du\\\hspace{100}x=\frac{b-a}{2}t+\frac{b+a}{2},\hspace{20}t=\frac{u}{2}(3-u^2)$

Sending completion

To improve this 'Romberg array Calculator', please fill in questionnaire.
Male or Female ?
Male Female
Age
Under 20 years old 20 years old level 30 years old level
40 years old level 50 years old level 60 years old level or over
Occupation
Elementary school/ Junior high-school student
High-school/ University/ Grad student A homemaker An office worker / A public employee
Self-employed people An engineer A teacher / A researcher
A retired people Others
Useful?
Very Useful A little Not at All
Purpose of use?