## Calculates the hadamard product of two matrices. The hadamard product of two matrices procuces another matrix where each element j,k is the product of elements j,k of the original two matrices.

 $\hspace{30}A \circ B=C\\\vspace{5}\normal{\left[\begin{array}\vspace{10} a_{\small 11}& \cdots& a_{\small 1k}\\\vspace{10} a_{\small 21}& \cdots& a_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\a_{\small j1}& \cdots& a_{\small jk}\\\end{array}\right]} \circ {\left[\begin{array}\vspace{7} b_{\small 11}& \cdots& b_{\small 1k}\\\vspace{10} b_{\small 21}& \cdots& b_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\b_{\small j1}& \cdots& b_{\small jk}\\\end{array}\right]}={\left[\begin{array}\vspace{13} a_{\small 11}b_{\small 11}& \cdots& a_{\small 1k}b_{\small 1k}\\\vspace{10} a_{\small 21}b_{\small 21}& \cdots& a_{\small 2k}b_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\a_{\small j1}b_{\small j1}& \cdots& a_{\small jk}b_{\small jk}\\\end{array}\right]}\\$
 (enter a data after click each cell in matrix) Matrix A {ajk} Matrix B {bjk}
 The Hadamard product, A◦B, can be found only if the matrix A and B have the same dimension (m*n).$A \circ B=C\hspace{30}\normal c_{jk}= a_{jk}b_{jk}$

Sending completion

Male or Female ?
Male Female
Age
Under 20 years old 20 years old level 30 years old level
40 years old level 50 years old level 60 years old level or over
Occupation
Elementary school/ Junior high-school student
High-school/ University/ Grad student A homemaker An office worker / A public employee
Self-employed people An engineer A teacher / A researcher
A retired people Others
Useful?
Very Useful A little Not at All
Purpose of use?