# Matrix product Calculator

## Calculates the matrix product of two matrices.

 $\hspace{30}AB=C\\\vspace{5}\normal{\left[\begin{array}\vspace{10} a_{\small 11}& \cdots& a_{\small 1j}\\\vspace{10} a_{\small 21}& \cdots& a_{\small 2j}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\a_{\small i1}& \cdots& a_{\small ij}\\\end{array}\right]} {\left[\begin{array}\vspace{7} b_{\small 11}& \cdots& b_{\small 1k}\\\vspace{10} b_{\small 21}& \cdots& b_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\b_{\small j1}& \cdots& b_{\small jk}\\\end{array}\right]}={\left[\begin{array}\vspace{13} c_{\small 11}& \cdots& c_{\small 1k}\\\vspace{10} c_{\small 21}& \cdots& c_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\c_{\small i1}& \cdots& c_{\small ik}\\\end{array}\right]}\\$
 (enter a data after click each cell in matrix) matrix A {aij} matrix B {bjk} product A*B=C B*A=C
 6dgt10dgt14dgt18dgt22dgt26dgt30dgt34dgt38dgt42dgt46dgt50dgt Matrix product
 The product AB can be found, only if the number of columns in matrix A is equal to the number of rows in matrix B.$AB=C\hspace{30}\normal c_{ik}={\large\sum_{\tiny j}}a_{ij}b_{jk}\\$

Sending completion

To improve this 'Matrix product Calculator', please fill in questionnaire.
Male or Female ?
Male Female
Age
Under 20 years old 20 years old level 30 years old level
40 years old level 50 years old level 60 years old level or over
Occupation
Elementary school/ Junior high-school student
High-school/ University/ Grad student A homemaker An office worker / A public employee
Self-employed people An engineer A teacher / A researcher
A retired people Others
Useful?
Very Useful A little Not at All
Purpose of use?