Inverse-chi-square distribution (percentile)

Calculates the percentile from the lower or upper cumulative distribution function of the inverse-chi-square distribution.

cumulative mode
 lower P upper Q
cumulative distribution
 0≦P,Q≦1
degree of freedom ν
 ν＞0
 6dgt10dgt14dgt18dgt22dgt26dgt30dgt34dgt38dgt42dgt46dgt50dgt
 $\normal Inverse-chi-square\ distribution\ \frac{1}{X^2}(x,\nu)\\[10](1)\qquad probability\ density\\\hspace{30}f(x,\nu)={\large\frac{x^{-\frac{\nu}{2}-1}e^{-\frac{1}{2\small x}}}{2^{\frac{\nu}{2}}\Gamma(\frac{\nu}{2})}}\\(2)\qquad lower\ cumulative\ distribution\\\hspace{30}P(x,\nu)={\large\int_{\small 0}^{\hspace{25}\small x}}f(t,\nu)dt\\(3)\qquad upper\ cumulative\ distribution\\\hspace{30}Q(x,\nu)={\large\int_{\small x}^{\hspace{25}\small\infty}}f(t,\nu)dt\\$
To improve this 'Inverse-chi-square distribution (percentile) Calculator', please fill in questionnaire.
Male or Female ?
Male Female
Age
Under 20 years old 20 years old level 30 years old level
40 years old level 50 years old level 60 years old level or over
Occupation
Elementary school/ Junior high-school student
High-school/ University/ Grad student A homemaker An office worker / A public employee
Self-employed people An engineer A teacher / A researcher
A retired people Others
Useful?
Very Useful A little Not at All
Purpose of use?
Comment/Request (Click here to report a bug).
Your feedback and comments may be posted as customer voice.