# Hermite polynomial (chart) Calculator

## Calculates a table of the Hermite polynomial Hn(x) and draws the chart.

 n n=0,1,2,... [ initial value x increment repetition ]
 $\normal Hermite\ polinomial\ H_n(x)\\[10](1)\ y''-2xy'+ny=0,\hspace{20}y=H_n(x)\\[10](2)\ {\large e^{2xt-t^2}}={\large\sum_{n=0}^{\infty}\frac{H_n(x)}{n!}}t^n\$$3)\hspace{5}{\large\int_{\tiny -\infty}^{\hspace{25}\tiny \infty}}H_n(x)H_m(x){\large e^{-x^2}}dx={\large 2^nn!\sqrt{n}\delta_{mn}}\\(4)\ H_n(x)\\\hspace{10}=2^n{\large\sqrt{\pi}}\({\large\frac{{}_{\tiny 1}F_{\tiny 1} (-\frac{n}{2};\frac{1}{2};x^2)}{\Gamma(\frac{1-n}{2})}}-{\large\frac{{}_{\tiny 1}F_{\tiny 1} (\frac{1-n}{2};\frac{3}{2};x^2)2x}{\Gamma(-\frac{n}{2})}}$$\\$

Hermite polynomial (chart)
 [0-0] / 0 Disp-Num5103050100200
The message is not registered.

Thank you for your questionnaire.
Sending completion

To improve this 'Hermite polynomial (chart) Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?
Comment/Request (Click here to report a bug).Bug report (Click here to report questionnaire.）
Calculation bug(Please enter information such as specific input values, calculation result, correct result, and reference materials (URL and documents).)
Text bug(Please enter information such as wrong and correct texts)
Your feedback and comments may be posted as customer voice.