# Continued fraction of function (2) Calculator

## Calculates the continued fraction expansion of function f(x) with n terms. b0+a1/(b1+a2/(b2+...

 $\normal f(x)=b_0+{\large\frac{a_1}{b_1+{\large\frac{a_2}{b_2+...}}}}\\$

 b0 the 1st term an the n-th term numerator bn the n-th term denominator x variable 6digit10digit14digit18digit22digit26digit30digit34digit38digit42digit46digit50digit
 $\normal Continued\ fraction\\\hspace{50} f(x)=b_0+{\large\frac{a_1}{b_1+{\large\frac{a_2}{b_2+...}}}}\\[10](1)\ f(x)=\lim_{\small{n \to \infty}}f_n(x)\\\hspace{50}f_n(x)=b_0+{\large\frac{a_1}{b_1+}\frac{a_2}{b_2+}\ \cdots\ \frac{a_n}{b_n+}}\\[10](2)\ Example\\[10]\hspace{20pt} function\hspace{10pt} b_0\hspace{30pt} a_n\hspace{25pt} b_n\\\hspace{35pt} {\large\sqrt{x}} \hspace{48pt} 1\hspace{25pt} x-1\hspace{20pt} 2\\\hspace{35pt} {\large\frac{x}{e^x-1}} \hspace{20pt} 1-{\large\frac{x}{2}}\hspace{20pt} {\large\frac{x^2}{4}}\hspace{20pt} 2n+1\\$

Continued fraction of function (2)
 [0-0] / 0 Disp-Num5103050100200
The message is not registered.

Sending completion

To improve this 'Continued fraction of function (2) Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?