# Electronic distribution of hydrogen (chart) Calculator

## Calculates a table of the electron radial distribution of hydrogen-like atoms and draws the chart.

 The electron position r with the Bohr radius a = 1 unit is the distance from the nucleus.

 atomic number Z H(1)He+(2) principal quantum number n n=1,2,3,... angular quantum number l l=0,1,2,..,n-1 [ initial position r of electron increment , repetition ]
 $\normal Probability\ density\ of\ finding\\\hspace{50}\ electron\ in\ a\ Hydrogen\ atom\\[10pt](1)\ -{\large\frac{\hbar^2}{\2m}}\nabla^2\psi-{\large\frac{Ze^2}{r}}\psi=E\psi\\\hspace{30}E=-{\large\frac{Z^2me^4}{2n^2\hbar^2}},\qquad Z=\{1:H,\ 2:He^+\}\\\hspace{30}\psi_{n,l,m}(r,\theta,\phi)=R_{nl}(r)Y_l^{m}(\theta,\phi)\\\vspace{10}(2)\ R_{nl}(r)=-\sqrt{({\large\frac{2Z}{na}})^3{\large\frac{(n-l-1)!}{2n(n+l)!}}}e^{-{\normal\frac{Zr}{na}}} \\\hspace{90}\times\ ({\large\frac{2Zr}{na}})^{l} L_{\small{n-l-1}}^{\small{2l+1}}({\large\frac{2Zr}{na}})\\\hspace{30}a={\large\frac{\hbar^2}{me^2}}\ :Bohr\ radius\\\vspace{10}(3)\ Probability\ density:\ R_{nl}(r)R_{nl}^*(r)r^2\\\hspace{20}{\large\int_{\small 0}^{\hspace{25}\small{\infty}}}R_{nl}R_{nl}^*(r)r^2dr=1\\$

Electronic distribution of hydrogen (chart)
 [0-0] / 0 Disp-Num5103050100200
The message is not registered.

Sending completion

To improve this 'Electronic distribution of hydrogen (chart) Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?