# Incomplete elliptic integral of the 2nd kind E(φ,k) Calculator

## Calculates the incomplete elliptic integral of the second kind E(φ,k).

 $E(\phi,k)={\large\int_{\small 0}^{\hspace{25}\small\phi}\sqrt{1-k^2sin^2\theta}}d\theta$

 φ degree   -360≦φ≦360radian    -2π≦φ≦2π k -1≦k≦1 6digit10digit14digit18digit22digit26digit30digit34digit38digit42digit46digit50digit
 ・ E(x,k) can be used at x=sin(φ).$\normal Incomplete\ elliptic\ integral\\\hspace{120} of\ the\ 2nd\ kind\ E(\phi,k)\\[10](1)\ E(\phi,k)={\large\int_{\small 0}^{\hspace{25}\small\phi}\sqrt{1-k^2sin^2\theta}}d\theta\\\hspace{75}={\large\int_{\small 0}^{\hspace{25}\small x}\sqrt{\frac{1-k^2t^2}{1-t^2}}}dt\ ,\hspace{30}x=sin\phi\\$

Incomplete elliptic integral of the 2nd kind E(φ,k)
 [1-2] /2 Disp-Num5103050100200
[1]  2017/03/22 19:04   Male / 20 years old level / A teacher / A researcher / Useful /
Comment/Request
Hi, I would like if I can obtain any analytical solution, for this integral, so that I can obtain the result with my desired constants so that i can isolate them.

[2]  2012/04/08 14:28   Male / 20 years old level / A housewife / Very /
Comment/Request
What is the Inverse Function for Elliptic Integral of the II kind?

Sending completion

To improve this 'Incomplete elliptic integral of the 2nd kind E(φ,k) Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?