# Matrix product Calculator

## Calculates the matrix product of two matrices.

 $\hspace{30}AB=C\\\vspace{5}\normal{\left[\begin{array}\vspace{10} a_{\small 11}& \cdots& a_{\small 1j}\\\vspace{10} a_{\small 21}& \cdots& a_{\small 2j}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\a_{\small i1}& \cdots& a_{\small ij}\\\end{array}\right]} {\left[\begin{array}\vspace{7} b_{\small 11}& \cdots& b_{\small 1k}\\\vspace{10} b_{\small 21}& \cdots& b_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\b_{\small j1}& \cdots& b_{\small jk}\\\end{array}\right]}={\left[\begin{array}\vspace{13} c_{\small 11}& \cdots& c_{\small 1k}\\\vspace{10} c_{\small 21}& \cdots& c_{\small 2k}\vspace{20}\\ \vdots& \ddots& \vdots\vspace{10}\\c_{\small i1}& \cdots& c_{\small ik}\\\end{array}\right]}\\$

 (enter a data after click each cell in matrix) matrix A {aij} matrix B {bjk} product A*B=CB*A=C 6digit10digit14digit18digit22digit26digit30digit34digit38digit42digit46digit50digit Matrix product
 The product AB can be found, only if the number of columns in matrix A is equal to the number of rows in matrix B.$AB=C\hspace{30}\normal c_{ik}={\large\sum_{\tiny j}}a_{ij}b_{jk}\\$

Matrix product
 [1-2] /2 Disp-Num5103050100200
[1]  2019/02/05 00:19   Male / 30 years old level / High-school/ University/ Grad student / Very /
Purpose of use
G-S algorythm
[2]  2018/11/18 22:43   Male / 20 years old level / High-school/ University/ Grad student / Very /
Purpose of use
Perspective projection matrix coordinates

Sending completion

To improve this 'Matrix product Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?