# Inverse matrix (order n) Calculator

## Calculates the inverse matrix of a square matrix of order n.

 $\normal A={\left[\begin{array}\vspace{10} a_{\small 11}& a_{\small 12}& \cdots& a_{\small 1j}\\\vspace{10} a_{\small 21}& a_{\small 22}& \cdots& a_{\small 2j}\vspace{20}\\ \vdots& \vdots& \ddots& \vdots\vspace{10}\\a_{\small i1}& a_{\small i2}& \cdots& a_{\small ij}\\\end{array}\right]}\hspace{20}A A^{\small -1}=A^{\small -1}A=I\\$

 (enter a data after click each cell in matrix) matrix A {aij} 6digit10digit14digit18digit22digit26digit30digit34digit38digit42digit46digit50digit Inverse matrix A-1
 $\normal AA^{\small -1} =LUA^{\small -1}=I\\[10]{A^{\small -1}=U^{\small -1}(L^{\small -1}I)\\$

Inverse matrix (order n)
 [1-1] /1 Disp-Num5103050100200
[1]  2014/03/03 03:02   Female / Under 20 years old / High-school/ University/ Grad student / A little /
Purpose of use
for a university homework, to test/see if a n-order diagonal matrix has a pattern of inversion

Sending completion

To improve this 'Inverse matrix (order n) Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?