# Confluent hypergeometric function of the first kind Calculator

## Calculates confluent hypergeometric function of the first kind or Kummer's function M(a,b,z).

 $\normal Confluent\ Hypergeometric\ function\ of\ the\ 1st\ kind\\[15]\large \hspace{30} {}_1F_1(a;b;z)=M(a,b,z)\\\hspace{105}=1+\frac{a}{b}z+\frac{a(a+1)}{b(b+1)}\frac{z^2}{2!}+\cdots=\sum_{\small n=0}^{\small \infty}\frac{(a)_n}{(b)_k}\frac{z^n}{n!}\\[10]$

 a b z 6digit10digit14digit18digit22digit26digit30digit34digit38digit42digit46digit50digit M(a,b,z)
 $\normal Confluent\ hypergeometric\ differential\ equation\\[15](1)\ zy''+(b-z)y'-ay=0\\\hspace{25} y=c_1M(a,b,z)+c_2U(a,b,z)\\[10](2)\ M(a,b,z)={}_1F_1(a;b;z)\\\hspace{85}=1+{\large\frac{a}{b}}z+{\large\frac{a(a+1)}{b(b+1)}\frac{z^2}{2!}}+\cdots={\large \sum_{\small n=0}^{\small \infty}}{\large \frac{(a)_n}{(b)_k}\frac{z^n}{n!}}\\[10]$

Confluent hypergeometric function of the first kind
 [1-4] /4 Disp-Num5103050100200
[1]  2018/09/26 05:35   Female / 50 years old level / A teacher / A researcher / Very /
Purpose of use
verified a 3rd-party programmed function, which exploded at larger z. You have a much better solution. thank you!
Comment/Request
You have a much better solution. thank you!
[2]  2018/02/23 22:19   Male / 20 years old level / High-school/ University/ Grad student / Useful /
Purpose of use
verifying values from scipy
[3]  2015/03/30 05:40   Male / 40 years old level / Self-employed people / Useful /
Purpose of use
Test my routines for confluent function calculations
[4]  2014/05/13 20:09   Female / 60 years old level or over / A teacher / A researcher / A little /
Purpose of use
self-education - (re)learning quantum mechanics.
Comment/Request
possibility to graph function on an appropriate domain, and especially see graphs of combined functions containing 1F1 and others would be very useful.

Sending completion

To improve this 'Confluent hypergeometric function of the first kind Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?