# Whittaker function of the second kind (chart) Calculator

## Calculates Whittaker function of the second kind Wk,m(z) and draws the chart.

 $\normal W_{k,m}(z)=e^{-{\normal\frac{z}{2}}}z^{\small m+{\normal\frac{1}{2}}}U(m-k+\frac{1}{2}\hspace{1},2m+1,z)\\$

 k m initial value z [ increment repetition ]
 $\normal Whittaker\ differential\ equation\\[10](1)\ y''+(\frac{1}{4}-\frac{k}{z}+\frac{m^2-{\normal\frac{1}{4}}}{z^2})y=0\\\hspace{25} y=c_1M_{k,m}(z)+c_2W_{k,m}(z)\\[10](2)\ M_{k,m}(z)=e^{-{\normal\frac{z}{2}}}z^{\small m+{\normal\frac{1}{2}}}{}_1F_1 (m-k+\frac{1}{2};2m+1;z)\\[10](3)\ W_{k,m}(z)=e^{-{\normal\frac{z}{2}}}z^{\small m+{\normal\frac{1}{2}}}U(m-k+\frac{1}{2}\hspace{1},2m+1,z)\\$

Whittaker function of the second kind (chart)
 [1-1] /1 Disp-Num5103050100200
[1]  2015/11/10 23:34   Male / 60 years old level or over / High-school/ University/ Grad student / A little /
Purpose of use
I am looking for zeros of W(a,b,z) with respect to a when b and z are fixed (all are complex).

Sending completion

To improve this 'Whittaker function of the second kind (chart) Calculator', please fill in questionnaire.
Male or Female ?
Age

Occupation

Useful?

Purpose of use?