# Continued fraction of constant (1)

## Calculates the continued fraction expansion of constant number with n terms. a0/(b0+a1/(b1+a2/(b2+...

 $\normal f={\large\frac{a_0}{b_0+{\large\frac{a_1}{b_1+{\large\frac{a_2}{b_2+...}}}}}}\\$
 a0 the 1st term numerator b0 the 1st term denominator an the n-th term numerator bn the n-th term denominator
 6dgt10dgt14dgt18dgt22dgt26dgt30dgt34dgt38dgt42dgt46dgt50dgt
 $\normal Continued\ fraction\\\hspace{50} f={\large\frac{a_0}{b_0+{\large\frac{a_1}{b_1+{\large\frac{a_2}{b_2+...}}}}}}\\[20](1)\ f=\lim_{\small{n \to \infty}}f_n\\\hspace{50pt}f_n={\large\frac{a_0}{b_0+}\frac{a_1}{b_1+}\frac{a_2}{b_2+}\ \cdots\ \frac{a_n}{b_n+}}\\[10](2)\ Example\\[10]\hspace{25pt} function\hspace{10pt} a_0\hspace{20pt} b_0\hspace{25pt} a_n\hspace{25pt} b_n\\\hspace{20pt} 1.\hspace{25pt}\pi\hspace{35pt} 4\hspace{26pt} 1\hspace{25pt} n^2\hspace{20pt} 2n+1\\\hspace{20pt} 2.\hspace{15pt}{\large\frac{1}{e-1}}\hspace{30pt} 1\hspace{28pt} 1\hspace{20pt} n+1\hspace{10pt} n+1\\\hspace{20pt} 3.\hspace{15pt}\ln\sqrt{2}\hspace{28pt} 1\hspace{28pt} 3\hspace{20pt} -n^2\hspace{10pt} 3(2n+1)\\\hspace{20pt} 4.\hspace{15pt}\sqrt{2}\hspace{40pt} 2\hspace{28pt} 1\hspace{30pt} 1\hspace{30pt} 2\\$

Sending completion

To improve this 'Continued fraction of constant (1) Calculator', please fill in questionnaire.
Male or Female ?
Male Female
Age
Under 20 years old 20 years old level 30 years old level
40 years old level 50 years old level 60 years old level or over
Occupation
Elementary school/ Junior high-school student
High-school/ University/ Grad student A homemaker An office worker / A public employee
Self-employed people An engineer A teacher / A researcher
A retired people Others
Useful?
Very Useful A little Not at All
Purpose of use?